Reference points based recursive approximation
نویسندگان
چکیده
The paper studies polynomial approximation models with a new type of constraints that enable to get estimates with significant properties. Recently we enhanced a representation of polynomials based on three reference points. Here we propose a two-part cubic smoothing scheme that leverages this representation. The presence of these points in the model has several consequences. The most important one is the fact that by appropriate location of the reference points the resulting approximant of two successively assessed neighboring approximants will be smooth. We also show that the considered models provide estimates with appropriate statistical properties such as consistency and asymptotic normality.
منابع مشابه
A Recursive Approximation Approach of non-iid Lognormal Random Variables Summation in Cellular Systems
Co-channel interference is a major factor in limiting the capacity and link quality in cellular communications. As the co-channel interference is modeled by lognormal distribution, sum of the co-channel interferences of neighboring cells is represented by the sum of lognormal Random Variables (RVs) which has no closed-form expression. Assuming independent, identically distributed (iid) RVs, the...
متن کاملA Novel Reference Current Calculation Method for Shunt Active Power Filters using a Recursive Algebraic Approach
This paper presents a novel method to calculate the reference source current and the referencecompensating current for shunt active power filters (SAPFs). This method first calculates theamplitude and phase of the fundamental load current from a recursive algebraic approach blockbefore calculating the displacement power factor. Next, the amplitude of the reference mains currentis computed with ...
متن کاملLeast-Squares Model-Reference Adaptive Control with Chebyshev Orthogonal Polynomial Approximation
This paper presents a model-reference adaptive control approach for systems with unstructured uncertainty based on two least-squares parameter estimation methods: gradient-based method and recursive leastsquares method. The unstructured uncertainty is approximated by Chebyshev orthogonal polynomial basis functions. The use of orthogonal basis functions improves the function approximation signif...
متن کاملReference points based transformation and approximation
Interpolating and approximating polynomials have been living separately more than two centuries. Our aim is to propose a general parametric regression model that incorporates both interpolation and approximation. The paper introduces first a new r-point transformation that yields a function with a simpler geometrical structure than the original function. It uses r ≥ 2 reference points and decre...
متن کاملNovel Algorithm to Calculate Hypervolume Indicator of Pareto Approximation Set
Hypervolume indicator is a commonly accepted quality measure for comparing Pareto approximation set generated by multi-objective optimizers. The best known algorithm to calculate it for n points in ddimensional space has a run time of O(n) with special data structures. This paper presents a recursive, vertex-splitting algorithm for calculating the hypervolume indicator of a set of n non-compara...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Kybernetika
دوره 49 شماره
صفحات -
تاریخ انتشار 2013